Measurements of $\left|V_{ub} ight|$ and $\left|V_{cb} ight|$ at BABAR

Romulus Godang

University of Mississippi-Oxford, USA

Particle and Nuclei International Conference

October 23-28, 2005 Santa Fe, NM, USA

(on behalf of the BABAR Collaboration)

Motivations

- $\ \square$ $\ B$ factories has improved our understanding of CP violation :
 - \diamondsuit sin $2\beta = 0.687 \pm 0.032$ (a precision measurement of 4.7%)
 - **←** This precision outstripped the other measurements
- \square As for today measurements $|V_{ub}|$ and $|V_{cb}|$ are complementary to sin~2eta

♦ Using only angle measurements

- **♦ Without angle measurements**
- \Box It is clear that we have to make the green ring $(\frac{|V_{ub}|}{|V_{cb}|})$ thinner in order to make a stringent test on the Standard Model
- \square We need to improve a precision of $|V_{ub}|$ (especially) and $|V_{cb}|$

Semileptonic B Decays

- \diamondsuit Why do we use semileptonic B Decays ?
 - ☐ Simple theoretical description at parton level
 - \square B flavor can be identified from charge of lepton
 - \square Coupling at W^- is propotional to $|V_{ub}|$ and $|V_{cb}|$ which is directly related in its decay rate :

$$ullet$$
 $\Gamma(b o u\ell
u)=rac{G_F^2}{192\pi^2}|V_{ub}|^2m_b^5$

$$ullet \Gamma(b o c\ell
u) = rac{G_F^2}{192\pi^2} |V_{cb}|^2 m_b^2 (m_b-m_c)^3$$

- \square Sensitive to strong interactions in B decays
 - ullet Exclusive measurements need form factors to describe the B transition
 - ullet Inclusive measurements need Operator Product Expansion (OPE) and b mass to extract $|V_{xb}|$

Exclusive and Inclusive Diagram

♦ Experimental Description

 E_{ℓ}

 $\langle E_{\ell}^n \rangle$

Inclusive Decays

HQEfit

 $\langle M_X^n \rangle$

 M_X

- $\square \ \ \text{Lepton Energy Moments}: \ M_\ell^{(n=2,3)} = \frac{\int_{E_{cut}}^\infty (E_\ell M_\ell^1)^n d\Gamma}{\int_{E_{cut}}^\infty d\Gamma} \text{,} \quad M_\ell^1 = \frac{\int_{E_{cut}}^\infty E_\ell d\Gamma}{\int_{E_{cut}}^\infty d\Gamma}$
- \Box Hadron Mass Moments : $M_X^{(n=1,2,3,4)} = \frac{\int_{E>E_{cut}} m_X^n d\Gamma}{\int_{E_{cut}}^\infty d\Gamma}$

♦ Electron Energy Spectrum : di-lepton tag technique

BABAR: 47 fb^{-1} (on-resonance) (PRD-RC 69, 111104, 2004)

- ☐ Select events with 2 electrons :
 - ullet One electron (1.4 $< p^* <$ 2.3 GeV) to tag a $B\overline{B}$ event
 - ullet The other electron ($p^*>0.5$ GeV) to measure the electron spectrum
- \square Measure partial ${\cal B}$ and the moments for $E_e>0.6$ GeV: account for $B^0\overline B^0$ mixing, correct for Bremsstrahlung, Final State Radiation and subtract $B\to X_u\ell\nu$ background

 ${\cal B}(B o X_c\ell
u) = (10.36\pm 0.06_{stat}\pm 0.23_{sys})\%$

Hadronic Mass Moments

 \Diamond Tag the events with a fully-reconstructed hadronic B decays

and find leptons with $E_\ell > E_{cut}$ in the recoil B mesons

BABAR: 81 fb^{-1} (on-resonance) (PRD-RC 69, 111103, 2004)

- Measured moments $(\langle M_X^n \rangle)$ are calibrated with MC events $(\langle M_X^{n\ true} \rangle)$ to eliminate its dependency on unknown masses of high charm states
- Validate calibration procedure with inclusive MC $B \to X_c \ell \nu$

- **First four moments:**
- (a) $\langle M_X \rangle$, (b) $\langle M_X^2 \rangle$, (c) $\langle M_X^3 \rangle$, (d) $\langle M_X^4 \rangle$

w.r.t. lepton momentum $(p_{min}^*) \Longrightarrow$ they are highly correlated (right plots)

- The measured moments, $\langle M_X^n
 angle$, increase as p_{min}^* decreases
 - ⇒ due to the presence of higher mass charm states

♦ Using previous hadron mass, electron energy moments measurements, kinetic mass

scheme ($\mu=1$ GeV) by Gambino & Uraltsev (Eur. Phy. J. C34, 181, 2004),

we extract $|V_{cb}|$, $\mathcal{B}(B o X_c \ell
u)$, and other parameters (PRL 93, 011803, 2004) :

☐ Red line is OPE fit and yellow band is theory error

 $\mathbf{1}^{st}$ row is hadron mass moments and $\mathbf{2}^{st}$ row is electron energy moments

 \implies Data and theory predictions agree very well $(\chi^2/ndf=20/15)$

$$|V_{cb}| = (41.4 \pm 0.4_{exp} \pm 0.4_{HQE} \pm 0.6_{th}) imes 10^{-3} ig|
ightarrow \sigma(|V_{cb}|) = 2~\%$$

$${\cal B}(B o X_c\ell
u) = (10.61\pm 0.16_{exp}\pm 0.06_{HQE})\% \hspace{0.2cm} o \sigma({\cal B}) = 1.6~\%$$

$$\square \; m_b = (4.61 \pm 0.05_{exp} \pm 0.04_{HQE} \pm 0.02_{lpha_s}) \; {\sf GeV}$$

$$\square \; m_c = (1.18 \pm 0.07_{exp} \pm 0.06_{HQE} \pm 0.02_{lpha_s}) \; {\sf GeV}$$

Inclusive $|V_{ub}|$ (Theory)

 \diamondsuit Challenging problem for $b o u \ell
u$ is how to suppress $b o c \ell
u$ background

 $rac{\Gamma(b o u\ell
u)}{\Gamma(b o c\ell
u)}\sim rac{|V_{ub}|^2}{|V_{cb}|^2}\sim rac{1}{50}.$ One must take care the $b o u\ell
u$ fraction (f_u) carefully

- \square OPE framework doesn't converge e.g. near E_ℓ endpoint
- □ Non-perturbative correction is described by Shape Function (SF) (light-cone momentum distribution of b quark inside B meson)

However, SF cannot be calculated, it has to be determined from :

- photon spectrum in $b \to s \gamma$
- hadronic and lepton spectrum in $b \to c \ell \nu$
- ☐ Theoretical Approaches :
 - OPE with ad-hoc inclusion of SF (DFN)

De Fazio, Neubert (JHEP 9906, 17, 1999); Kagan, Neubert (Eur. Phys. J. C7, 5, 1999)

• OPE for $M_X - q^2$ cut for minimizing the SF effect (BLL)

Bauer, Ligeti, and Luke hep-ex/0111387

Improved OPE that incorporates SF systematically (BLNP)

Bosch, Lange, Neubert, Paz Nucl. Phys. B 699, 335, 2004; Lange, Neubert, Paz hep-ph/0504071

 \Diamond Use electrons: 2.0 < E_e < 2.6 GeV, correct det. resolution and final-state radiation

BABAR: 80 fb^{-1} (on-resonance) (hep-ex/0509040 submitted to PRD)

- \diamondsuit Data & MC $B\overline{B}$ background
- ♦ Data & signal MC
- $\diamondsuit \Delta \mathcal{B} \text{ vs } p_e$

We measure partial and total branching fractions and extract $\left|V_{ub}\right|$:

$$\Delta \mathcal{B}(B o X_u \ell
u) = (0.572 \pm 0.041_{stat} \pm 0.065_{sys}) imes 10^{-3}$$

$$\mathcal{B}(B o X_u\ell
u) = (2.27\pm0.26_{exp}\,{}^{+0.33}_{-0.28_{SF}}\pm0.17_{th-BLNP}) imes 10^{-3}$$

$$|V_{ub}| = (4.44 \pm 0.25_{exp} ^{+0.42}_{-0.38_{SF}} \pm 0.22_{th-BLNP}) imes 10^{-3} igg|
ightarrow \sigma \sim 12~\%$$

 \diamondsuit SF parameters are based on $b o c\ell
u$ and $b o s\gamma$ from BABAR

$|V_{ub}|$ from $(E_\ell-q^2)$

 \Diamond Energy electrons: $E_e > 2.0$ GeV, with electron-neutrino reconstruction

BABAR: 81 fb^{-1} (on-resonance) (PRL 95, 111801, 2005)

 \diamondsuit Estimate $b \to c\ell\nu$ from $b \to u\ell\nu$ using maximum hadronic mass squared (S_h^{max})

 \diamondsuit Signal : $E_e > 2.1$ GeV, $S_h^{max} < 3.5$ GeV 2 , $B\overline{B}$ bkg : $S_h^{max} > 4.25$ GeV 2

$$\Delta \mathcal{B}(B o X_u \ell
u) = (0.354 \pm 0.033_{stat} \pm 0.034_{sys}) imes 10^{-3}$$

 $\square \; |V_{ub}|$ is extracted from $|V_{ub}| = \sqrt{\Delta \mathcal{B}/(\Delta \zeta imes au_B)}$,

 $\Delta \zeta$ is normalized partial rate and $au_B = 1.604 \pm 0.023$ ps

$$|V_{ub}| = (3.95 \pm 0.26_{exp} ^{+0.58}_{-0.42_{SF}} \pm 0.25_{th-BLNP}) imes 10^{-3} \ |
ightarrow \sigma \sim 17 \ \%$$

 \diamondsuit SF parameters are based on $b \to c \ell
u$ moments from BABAR

$|V_{ub}|$ from (M_X-q^2)

 \diamondsuit Select events with a fully reconstructed B and study recoil B

BABAR: 211 fb^{-1} (on-resonance) (hep-ex/0507017 for LP2005)

 \diamondsuit Signal region : $M_X < 1.7$ GeV, $q^2 > 8$ GeV 2 , blue is $b \to u \ell \nu$ inside signal region

$$\Delta \mathcal{B}(B o X_u \ell
u) = (0.87 \pm 0.09_{stat} \pm 0.09_{sys} \pm 0.01_{th}) imes 10^{-3}$$

$$|V_{ub}|^{BLL} = (4.82 \pm 0.26_{stat} \pm 0.25_{sys} \pm 0.46_{SF+th}) imes 10^{-3} \ \sigma \sim 12 \ \%$$

$$|V_{ub}|^{BLNP} = (4.65 \pm 0.24_{stat} \pm 0.24_{sys} ^{+0.46}_{-0.38_{SF}} \pm 0.23_{th}) imes 10^{-3}$$
 $\sigma \sim 13~\%$

 \diamondsuit SF parameters are based on $b \to c \ell \nu$ from BABAR

Inclusive $|V_{ub}|$ (Summary)

♦ New BABAR electron endpoint result is not in this summary yet

$$\implies |V_{ub}| = (4.44 \pm 0.25_{exp} ^{+0.42}_{-0.38_{SF}} \pm 0.22_{th-BLNP}) \times 10^{-3}$$

$$|V_{ub}|_{Avg} = (4.38 \pm 0.19_{exp} \pm 0.27_{[m_b,th]}) \times 10^{-3}$$

$${\cal B}(B o X_u\ell
u)_{Avg} = (2.18\pm 0.33) imes 10^{-3}$$

Exclusive $|V_{ub}|$ and $|V_{cb}|$

 \Diamond Determination of exclusive $|V_{ub}|$ and $|V_{cb}|$ is complicated due to strong interaction effects

These effects may be parameterized by Form Factors (squared four-momentum transfer)

- \square BABAR measurements on exclusive $|V_{ub}|$:
 - Neutrino reconstruction (76/fb): (PRD-RC 72, 051102, 2005)

Modes : $(B^0 o\pi^-\ell^+
u)$ & $(B^0 o
ho^-\ell^+
u)$; $|p_\ell^*|>1.3$ GeV, $\pi/
ho$, $|p_{miss}|>0.7$ GeV

 $\Diamond \ q^2$ with form-factor predictions : (a) $B^0 o \pi^- \ell^+
u$ (b) $B^0 o
ho^- \ell^+
u$

$$|V_{ub}| = (3.82 \pm 0.14_{stat} \pm 0.22_{sys} \pm 0.11_{q^2} ^{+0.88}_{-0.52_{FF}}) imes 10^{-3}$$

• Semileptonic B decays :

$$\mathcal{B}(B^+ o \pi^0 \ell^+
u) = (1.80 \pm 0.37_{stat} \pm 0.23_{sys}) imes 10^{-4}$$
, (81/fb) (hep-ex 0506065) $\mathcal{B}(B^0 o \pi^- \ell^+
u) = (1.03 \pm 0.25_{stat} \pm 0.13_{sys}) imes 10^{-4}$, (211/fb) (hep-ex 0506064)

$$|V_{ub}| = (3.3 \pm 0.4_{stat} \pm 0.2_{sys} ^{+0.8}_{-0.4_{FF}}) imes 10^{-3}$$

Exclusive $\left|V_{ub}\right|$ and $\left|V_{cb}\right|$

 \square Fully hadronic recoil (211/fb): $[q^2$ resolution $(0.25\text{-}0.50 \text{ GeV}^2)]$ (hep-ex 0507085)

Selection :
$$q^2 < 8~{
m GeV}^2$$
, 8-16 ${
m GeV}^2$, $q^2 > 16~{
m GeV}^2$; $p_\ell^* > 0.5~{
m GeV}$, $p_\mu^* > 0.8~{
m GeV}$

$${\cal B}(B^0 o\pi^-\ell^+
u)=(1.14\pm0.27_{stat}\pm0.17_{sys}) imes10^{-4}$$

$${\cal B}(B^+ o\pi^0\ell^+
u)=(0.86\pm0.22_{stat}\pm0.11_{sys}) imes10^{-4}$$

$$|V_{ub}| = (3.7 \pm 0.3_{stat} \pm 0.2_{sys} ^{+0.8}_{-0.5_{FF}}) \times 10^{-3}$$

♦ Compare with other BABAR measurements :

- \square BABAR measurement on exclusive $|V_{cb}|$: (PRD-RC 71, 051502, 2005)
 - $\mathcal{B}(\overline{B}^0 \to D^{*+}\ell^-\bar{\nu}_\ell) = (4.90 \pm 0.07_{stat} ^{+0.36}_{-0.35})\%$ (79/fb)

Using LQCD calculation : $\mathcal{A}_1 = \mathcal{F}(1) = 0.919^{+0.030}_{-0.035}$ (PRD 66, 014503, 2002)

$$|V_{cb}| = (38.7 \pm 0.3_{stat} \pm 1.7_{sys} ^{+1.5}_{-1.3_{th}}) imes 10^{-3}$$

Summary

- \Box A precision measurement of $\frac{|V_{ub}|}{|V_{cb}|}$ would significantly improve the constraints on the Unitary Triangle in SM
 - **⇒** It could benchmark for New Physics
- \square Current precision of $|V_{ub}|$ and $|V_{cb}|$ measurements :
 - $(\frac{\Delta |V_{ub}|}{|V_{ub}|}) = (3.3_{exp} \pm 2.9_{model} \pm 4.7_{SF} \pm 4.0_{th})\% = 7.6\%$
 - ullet $(rac{\Delta |V_{cb}|}{|V_{cb}|}) =$ 2%. (OPE fit of E_ℓ and M_X moments by BABAR)
 - \Longrightarrow It contributes directly to a precision of $(\frac{\Delta |V_{td}|}{|V_{td}|})$
- \square BABAR is aiming to measure $(rac{\Delta |V_{ub}|}{|V_{ub}|})=5\%$

The current theoretical limit is $\sim 5\%$

 \square BABAR will double the data by summer 2006 (0.5 ab^{-1})

We hope to quadruple the data by 2008 (1 ab^{-1})